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1. Introduction

A Kaluza-Klein (KK) reduction of a higher dimensional theory of gravity down to a lower

dimensional theory using an internal manifold N is said to be consistent if any solution to

the equations of motion of the lower-dimensional theory can be uplifted on N to obtain

a solution to the equations of motion of the higher-dimensional theory. If one keeps the

entire infinite tower of KK modes the reduction is obviously consistent, since the reduction

is simply a rewriting of the original higher dimensional theory. However, in certain special

cases it is possible to obtain consistent KK reductions by further truncating to a finite

number of modes.

The standard way to prove that a KK reduction is consistent is to construct a KK

ansatz: i.e. an explicit embedding of the fields of the lower-dimensional theory into the

higher-dimensional one, with the property that the equations of motion of the higher-

dimensional theory are satisfied provided that the equations of motion of the lower-dimen-

sional theory are. Such a KK ansatz has the virtue that any explicit solution of the lower-

dimen-sional theory can be uplifted to obtain an explicit solution of the higher dimensional
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theory. This has proved to be a very powerful technique for constructing supergravity

solutions relevant for string/M-theory.

While much is now known about consistent KK truncations a single overarching prin-

ciple governing all cases remains elusive, if indeed one exists. Recently we put forward a

conjecture [1] (related to [2]) for sufficient criteria for consistency, covering a large number

of supersymmetric cases. Consider the most general supersymmetric solutions of D = 10

or D = 11 supergravity1 that are (warped) products, AdSd+1 ×w N , of a d+1-dimensional

anti-de-Sitter space, AdSd+1, with an internal space, N , that are dual to supersymmetric

conformal field theories (SCFTs) in d dimensions. We conjectured that there should be a

consistent KK reduction on N to a gauged supergravity theory in d+1 dimensions for which

the fields are dual to those in the superconformal current multiplet of the d-dimensional

dual SCFT.

We now know that this conjecture is in fact a theorem for a number of different cases for

which the explicit KK reduction ansatze have been constructed. For example, for the class

of AdS5 × M5 solutions of type IIB supergravity, where M5 is a Sasaki-Einstein manifold,

that are dual to N = 1 SCFTs in d = 4, it was shown in [3] (see also [4]) that there is

a consistent KK reduction of IIB supergravity on M5 to minimal gauged supergravity in

D = 5. This result was generalised in [1] to the most general class of AdS5×w N5 solutions

of type IIB that are dual to N = 1 SCFTs in d = 4 [5], thus verifying the conjecture in

this case. It was shown in [6] that minimal D = 5 gauged supergravity also arises from

the KK reduction of D = 11 supergravity on N6 associated with the most general class of

AdS5 ×w N6 solutions of D = 11 with d = 4, N = 1 SCFT duals [7]. Furthermore, [6] also

showed that for general classes of AdS4 ×w N7 solutions that are dual to N = 2 SCFTs in

d = 3 there is a consistent KK reduction on N7 to N = 2 gauged supergravity in D = 4.

Of course, the well-known consistent KK reductions of D = 11 supergravity on S4 [8] and

S7 [9, 10], or of IIB supergravity2 on S5 (see, e.g., [11 – 14]), related to the maximally

supersymmetric solutions AdS7 × S4, AdS4 × S7 and AdS5 × S5, respectively, are also

examples supporting the conjecture.

In this paper we will consider the general class of AdS5 ×w N6 solutions of D = 11

supergravity that are dual to N = 2 SCFTs in d = 4. Such supergravity solutions were

classified by Lin, Lunin and Maldacena in [15], refining the work of [7]. Such SCFTs have

an SU(2) × U(1) R-symmetry and so the conjecture of [1] says that there should be a

consistent KK reduction of D = 11 supergravity on N6 to Romans’ D = 5 SU(2) × U(1)

gauged supergravity [16] (more precisely to what is called the N = 4+ theory in [16]). In

this paper we will construct the full non-linear KK ansatz for the bosonic fields.

At a technical level, this case is considerably more involved than the previous cases

considered in [6, 1]. The central subtlety in guessing the correct KK ansatz is the correct

incorporation of the scalar field of the D = 5 gauged supergravity. We found the results

of [14, 17] to be particularly helpful. In [14] the full KK ansatz for the reduction of

type IIB supergravity on an S5 to Romans’ theory was presented. This is expected to

1One can also consider supergravity theories in other dimensions.
2No complete reduction ansatz of IIB supergravity on S

5 has been yet constructed.
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be a truncation of a more general KK ansatz to maximally supersymmetric SO(6) gauged

supergravity. Now, after T-duality and uplifting, it is known [18] that the AdS5 × S5

solution of type IIB supergravity can be used to obtain the singular AdS5 ×w N6 solution

of D = 11 supergravity found in [19]. By performing the same T-duality and uplifting on

the type IIB KK reduction ansatz for the S5 found in [14], it was shown in [17] how one can

obtain Romans’ theory by reduction of the specific D = 11 solution found in [19]. The form

of the KK reduction ansatz, for this specific solution, provided us with important clues in

obtaining the ansatz for an arbitrary AdS5 ×w N6 solution that we shall present here.

The only regular AdS5 ×w N6 solution that we are aware of is the solution constructed

by Maldacena and Núñez in [20]. This solution is dual to the N = 2 SCFT in d = 4

that lives on M5-branes wrapping holomorphic Riemann surfaces in Calabi-Yau two-folds.

Using this solution we can uplift any explicit solution of Romans’ theory to obtain an

explicit solution of D = 11 supergravity. We uplift some known solutions of Romans’

theory and discuss how some of them are related to wrapped brane solutions.

The calculations required for checking that our KK ansatz is correct are quite involved

and so we have included a few details in an appendix.

2. Romans from Lin, Lunin and Maldacena via Kaluza and Klein

In this section we present the KK ansatz for the reduction of D = 11 supergravity on the

geometries N6 classified by Lin, Lunin and Maldacena (LLM), down to Romans’ D = 5

SU(2) × U(1) gauged supergravity. We begin by first reviewing the work of LLM and

Romans in subsections 2.1 and 2.2, respectively.

2.1 The geometry of LLM

The geometry underlying the most general AdS5 solutions of D = 11 supergravity that

are dual to N = 2 SCFTs in d = 4 was first derived by LLM in [15], where it was

shown that such supergravity solutions are determined by solutions of a continuous three

dimensional version of the Toda equation. The same conditions were rederived from a

different point of view in [21], by taking the AdS limit of a general class of Minkowski

geometries corresponding to M5-branes wrapped on a Kähler two-cycle in a Calabi-Yau

two-fold. We will use the notation of [21], which also includes the explicit dictionary

between the two descriptions. Our conventions for D = 11 supergravity are as in [22],

some of which is recorded in appendix A.

The metric is a warped product of AdS5, with radius 1/m, with a six-dimensional

internal manifold N6:

ds2
11 = λ−1ds2(AdS5) + ds2(N6), (2.1)

where the warp factor λ is a function of the coordinates on N6 only. As in [21], we will let

(e1, . . . , e6) be an orthonormal frame for N6,

ds2(N6) = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2 , (2.2)
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with

e4 =
λ

2m
√

1 − z
dρ

(e5)2 + (e6)2 =
λ2ρ2

4m2
dµidµi . (2.3)

Here, ρ is a coordinate, z ≡ λ3ρ2 and the µi, i = 1, 2, 3, satisfying µiµi = 1, parametrise

a two-sphere. Note that the one-form ρ̂ in [21] is denoted here by e4. We will define a

positive orientation by ǫ = e123456. The four-form flux is given by

G4 = − 1

8m2
ǫijkµ

idµj ∧ dµk ∧
[

d
(

λ1/2ρ
√

1 − ze3
)

+ 2m
(

λρe12 + λ−1/2e34
)]

. (2.4)

The necessary and sufficient conditions for (2.1), (2.4) to be a supersymmetric solution to

the equations of motion of D = 11 supergravity are

d
(

λ−1
√

1 − ze1
)

= mλ−1/2
(

λ3/2ρe14 + e23
)

,

d
(

λ−1
√

1 − ze2
)

= mλ−1/2
(

λ3/2ρe24 − e13
)

,

d

(

λ1/2

√
1 − z

e3

)

= − 2mλ

1 − z
e12 − 3λρ

(1 − z)3/2

[

(dλ)4e
12 − (dλ)2e

14 + (dλ)1e
24
]

,

(2.5)

where

dλ = (dλ)1e
1 + (dλ)2e

2 + (dλ)4e
4 , (2.6)

and e12 ≡ e1 ∧ e2, etc.

The d = 4, N = 2 dual SCFTs have an SU(2) × U(1) R-symmetry, and this manifests

itself as isometries of the internal metric ds2(N6). The SU(2) symmetry of the two-sphere,

parametrised by the µi, is clearly a symmetry of the solution. The vector field dual to e3 is

proportional to the additional U(1) Killing vector, consistent with (2.6). This is explained

in more detail in [21] where it is shown how the above conditions allow one to introduce

coordinates, used by [15], which makes the U(1) symmetry manifest. One subtlety is that

the frame we will be using depends on the coordinate parametrising the orbits of this U(1)

and so, for example, we have from (2.5)

(d(dλ)1)3 = − mλ1/2

√
1 − z

(dλ)2 ,

(d(dλ)2)3 =
mλ1/2

√
1 − z

(dλ)1 . (2.7)

2.2 Romans’ D = 5 SU(2) × U(1) supergravity

The field content of Romans’ (N = 4+) SU(2) × U(1) gauged supergravity in D = 5 [16]

consists of a metric, with line element ds2
5, a scalar field X, U(1) × SU(2) gauge fields B,

Ai, with i = 1, 2, 3, and a complex two form C which is charged with respect to the U(1)
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gauge field. The corresponding field strengths for these potentials are given by

G = dB,

F i = dAi − 1√
2
mǫijkA

j ∧ Ak,

F = dC + imB ∧ C. (2.8)

In our conventions, the equations of motion for the scalar and the gauge fields are

d(X−1 ∗dX) =
1

3
X4 ∗G ∧ G − 1

6
X−2 (∗F i ∧ F i + ∗C ∧ C̄)

−4

3
m2 (X2 − X−1) ∗1l, (2.9)

d(X4 ∗G) = −1

2
F i ∧ F i − 1

2
C̄ ∧ C, (2.10)

D(X−2 ∗F i) = −F i ∧ G, (2.11)

X2 ∗F = im C , (2.12)

where D(X−2 ∗ F i) ≡ d(X−2 ∗ F i) +
√

2mǫijkA
k ∧ (X−2 ∗ F j), we have taken ǫ01234 = +1

for the five-dimensional space, and C̄ denotes complex conjugate of C. In addition, the

Einstein equation reads

Rµν = 3X−2 ∂µX ∂νX − 4

3
m2 (X2 + 2X−1) gµν

+
1

2
X4

(

Gµ
ρGνρ −

1

6
gµν GρσGρσ

)

+
1

2
X−2

(

F i ρ
µ F i

νρ −
1

6
gµν F i

ρσF iρσ

)

+
1

2
X−2

(

C(µ
ρ C̄ν)ρ −

1

6
gµν CρσC̄ρσ

)

. (2.13)

These equations of motion can be derived from the five-dimensional Lagrangian given

by

L = R ∗1l − 3X−2∗dX ∧ dX − 1

2
X4 ∗G ∧ G − 1

2
X−2 (∗F i ∧ F i + ∗C(2) ∧ C̄)

− i

2m
C ∧ F̄ − 1

2
F i ∧ F i ∧ B + 4m2(X2 + 2X−1) ∗1l . (2.14)

Note that the scalar X can be written in terms of a canonically-normalised dilaton φ as

X = e
−

1
√

6
φ
. This Lagrangian can be obtained from the one in [16], up to an overall factor,

after changing the signature of the metric, taking g1 = −2m, g2 = −2
√

2m, ξ = X−1

and scaling the gauge fields by a factor of 1/2. We also note that if we set m = −g we

have exactly the same equations of motion and Lagrangian as given in [14], except that we

disagree with the definition of D(X−2 ∗ F i) by a sign.

Finally, for later use, we note that if we restrict to configurations with X = 1, F 1 =

F 2 = C = 0 and F 3 =
√

2G, the equations of motion (2.9)–(2.13) of Romans theory

truncate to

d ∗ G = −G ∧ G (2.15)

Rµν = −4m2gµν +
3

2

(

GµλGν
λ − 1

6
gµνGλρG

λρ

)

. (2.16)
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These are the equations of motion of minimal D = 5 gauged supergravity [23]. In particular,

we can use the reduction formulae given in subsection 2.3 to uplift any solution of D = 5

minimal gauged supergravity to obtain a solution of D = 11 supergravity.

2.3 The Kaluza-Klein ansatz

We are now in a position to construct the full non-linear ansatz for the KK reduction of

D = 11 supergravity on any of the six-dimensional manifolds N6 reviewed in subsection 2.1

down to Romans’ D = 5 SU(2) × U(1) gauged supergravity.

The KK ansatz for the metric takes the form

ds2
11 = X−1/3∆1/3λ−1ds2

5 + ds2(N̂6) , (2.17)

where we have introduced the ubiquitous quantity

∆ = Xz + X−2(1 − z) . (2.18)

In addition

ds2(N̂6) = X2/3∆1/3
[

(e1)2+(e2)2+(e4)2
]

+X5/3∆−2/3(ê3)2+X−4/3∆−2/3 λ2ρ2

4m2
DµiDµi

(2.19)

where

ê3 = e3 +

√
1 − z

λ1/2
B , (2.20)

Dµi = dµi +
√

2mǫijkA
kµj . (2.21)

The way that the SU(2)×U(1) gauge fields are incorporated here follows the usual general

principles of KK reductions. The way that the scalar field enters is much less obvious as is

the expression for the four-form which is given by

G4 = G̃4 + G ∧ β2 + F i ∧ βi
2 + ∗F i ∧ βi

1 + (C ∧ α2 + F ∧ α1 + c.c.) (2.22)

where here and in the following ∗ is the Hodge dual with respect to the metric ds2
5, c.c.

denotes complex conjugation,

G̃4 = − 1

8m2
ǫijkµ

iDµj ∧ Dµk ∧
[

d
(

X−2∆−1ρ(1 − z)
)

∧ λ1/2

√
1 − z

ê3

+X−2∆−1ρ(1 − z)d

(

λ1/2

√
1 − z

e3

)

+ 2m
(

λρe12 + λ−1/2ê34
)

]

(2.23)
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(we emphasise that in the second term there is no hat on the e3 –the term should be

constructed from (2.5)), ê34 ≡ ê3 ∧ e4 (and, in general, ê3a1···ak ≡ ê3 ∧ ea1···ak) and

β2 =
1

8m2
ρzX∆−1ǫijkµ

iDµj ∧ Dµk ,

βi
2 =

1

2
√

2m

[

X−2∆−1ρλ1/2
√

1 − zDµi ∧ ê3 − 2mµi(λρe12 + λ−1/2ê34)
]

,

βi
1 = − X−2

2
√

2m

(

µidρ + ρDµi
)

,

α1 =
1

2
√

2m
λ−1

√
1 − z(e1 − ie2) ,

α2 =
1

2
√

2
(e1 − ie2) ∧

(

λρe4 + iλ−1/2ê3
)

. (2.24)

Of course, when the D = 5 fields are trivial, X = 1, B = 0, Ai = 0, C = 0, the KK

reduction ansatz (2.17), (2.22) reduces to the undeformed geometry (2.1), (2.4).

After a lengthy calculation, one can show that the KK reduction ansatz (2.17), (2.22)

satisfies the equations of motion of D = 11 supergravity (A.1)–(A.3), provided the D = 5

fields satisfy the equations of motion (2.9)–(2.13) of Romans theory. This shows, at the

level of the bosonic fields, the consistency of the KK reduction. See appendix A for some

details of the consistency proof.

3. Uplifting explicit solutions and wrapped branes

The only regular AdS5 ×w N6 solution with N = 2 supersymmetry that we are aware of

is the solution found by Maldacena and Núñez in [20]. This solution is dual to the N = 2

d = 4 CFT living on M5-branes wrapping a Riemann surface holomorphically embedded

in a Calabi-Yau two-fold. More precisely, the CFT is obtained after taking a decoupling

limit and then flowing to the far IR as we will elaborate on a little further below. Using

the explicit formulae of subsection 2.3, this solution can be used to uplift explicit solutions

of Romans’ D = 5 SU(2)×U(1) gauged supergravity to obtain explicit solutions of D = 11

supergravity.

Setting m = 1/2 for simplicity, we find that the D = 11 metric (2.17) of the uplifted

solution takes now the explicit form

ds2
11 = 2−2/3∆̄1/3ds2

5 + 21/3X∆̄1/3[dθ2 + ds2(H2)]

+21/3X∆̄−2/3 sin2 θ

(

dx3 + V +
1

2
B

)2

+ 2−2/3X−2∆̄−2/3 cos2 θDµiDµi (3.1)

where we have replaced, for convenience, the coordinate ρ by a new coordinate θ such

that ρ = 1
2 cos θ, x3 is a coordinate along the U(1) Killing direction e3, ds2(H2) is the

standard metric on a unit radius hyperbolic two plane, dV = −vol(H2) and ∆̄ = cos2 θ +

(X−3/2) sin2 θ. We note that here and in the following we can quotient H2 by a discrete

group of isometries, H2/Γ, and hence obtain a compact Riemann surface with genus greater

than one, without breaking supersymmetry. This is the Riemann surface that the M5-

branes are wrapping. In obtaining (3.1) we have used the expression for the solution of [20]
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as given in [15] and then used appendix D of [21] to translate it into the language of this

paper. For example, we note that z = 2cos2 θ/(1 + cos2 θ).

In the following subsections, we will use (3.1) to uplift some explicit supersymmetric

solutions of Romans’ D = 5 theory to obtain explicit solutions of D = 11 supergravity,

some of which are new. We will also discuss how these solutions are related to other

solutions in D = 11 and IIB supergravity.

3.1 Uplifting the Nieder-Oz solution

Following [20], Nieder and Oz considered the following ansatz for the D = 5 supergravity

fields [24] (translated into our conventions):

ds2
5 =

e2f

4m2

[

−dt2 + dr2
]

+
e2g

4m2
ds2(H3)

X = e−ϕ

Ai =
1

2
√

2m
ǫijkω

jk

B = 0 , C = 0 (3.2)

where ωij is the spin connection of the unit radius metric on a three-dimensional hyper-

boloid H3 and f, g, ϕ are functions of r only. Once again, here and in the following, one can

replace H3 with H3/Γ, whilst preserving supersymmetry. This is indeed a supersymmetric

solution providing that f, g, ϕ satisfy

e−f ḟ = −1

3
e−ϕ − 1

6
e2ϕ − eϕ−2g

e−f ġ = −1

3
e−ϕ − 1

6
e2ϕ + eϕ−2g

e−f ϕ̇ = −1

3
e−ϕ +

1

3
e2ϕ − eϕ−2g (3.3)

In [24] these equations were partially integrated. Furthermore, it was shown numerically

that there are solutions that interpolate from a region where the D = 5 metric is

ds2
5 =

1

m2r2
[−dt2 + ds2(H3) + dr2] (3.4)

down to an exact AdS2 × H3 solution given by

ds2
5 =

1

4m222/3

[

ds2(AdS2) + 4ds2(H3)
]

X = 4−1/3

Ai =
1

2
√

2m
ǫijkω

jk (3.5)

and B = 0, C = 0. Such solutions are sometimes called topological black holes.

In [24] these solutions were uplifted on an S5 using the results of [14] to obtain solutions

of type IIB supergravity.3 The type IIB solution obtained by uplifting the AdS2 × H3

3The correctly uplifted formula, for the AdS2 ×H3 solution, were given in [25].
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solution (3.5) is dual to the SCFT living on D3-branes wrapping an associative H3 in a

G2 manifold. This CFT preserves 2 supercharges. A key aspect of this interpretation

is that the gauge fields that are switched on are dual to the R-symmetry currents that

must be activated in order that the field theory on the D3-branes, i.e. N = 4 d = 4

SYM theory on R × H3, can preserve supersymmetry [20]. Additional evidence for this

interpretation is provided by the uplifted numerical solution of [24]. It describes a “RG

flow across dimensions” from the locally asymptotic AdS5 region (3.4), where one clearly

sees the R×H3 world-volume of the D3-brane, down to the AdS2 fixed point (3.5). Exactly

the same kind of arguments [20] lead to the interpretation of the AdS5×w N6 solution with

N = 2 supersymmetry that we mentioned at the beginning of this section.

After setting m = 1/2 we can use (3.1) to uplift the AdS2 ×H3 solution (3.5) and also

the numerical solution found in [24] to obtain solutions of D = 11 supergravity. We find

that the AdS2 × H3 solution (3.5) uplifts to a D = 11 solution with metric given by

ds2
11 =

(1 + sin2 θ)1/3

24/3

[

ds2(AdS2) + 4ds2(H3) + 2ds2(H2)

+2dθ2 +
2 sin2 θ

(1 + sin2 θ)
(dx3 + V )2 +

4cos2 θ

(1 + sin2 θ)
DµiDµi

]

(3.6)

where Dµi = dµi + ωijµj. The numerical solution of [24] uplifts to a D = 11 solution that

interpolates from a region with a locally AdS5 factor as in (3.4), to the above AdS2 solution.

The dual interpretation is therefore clear. The numerical solution describes the RG flow

across dimensions from the d = 4 CFT that lives on M5-branes wrapping a holomorphic

H2 in a CY2, placed on R × H3 with suitable R symmetry currents activated in order to

preserve supersymmetry, down to a conformal quantum mechanics with two supercharges.

One might wonder what happens if one considers the CFT living on M5-branes placed

directly on R × H3 × H2. With the above R-symmetry currents, this corresponds to

M5-branes wrapping H3 × H2 in a CY3 × CY2 where H3 is a SLAG 3-cycle and H2 is a

holomorphic 2-cycle. In fact solutions describing such wrappings were already constructed

in [26]. In particular, there is an AdS2 solution which is exactly the same as the uplifted

solution (3.6). Furthermore, [26] also studied some flow equations: if we substitute e2f =

22/3e−4λ/3e2f̄ , e2g = 25/3e−4λ/3e2g1 and e−ϕ = 2−1/3e−10λ/3 into (3.3) then we obtain the

odes in equation (4.5) of [26] provided that we set g2 = −λ.

We can also consider reversing the order. We could first consider the d = 3 CFT living

on M5-branes wrapping a SLAG H3 in a CY3. The relevant AdS4 ×w N7 solution was

constructed in [27]. We now consider placing this d = 4 CFT on R × H2 with suitable

R-symmetry currents to preserve supersymmetry and ask what happens in the IR. It was

shown in [1] how one can carry out an explicit KK reduction from D = 11 supergravity on

N7 to D = 4 minimal gauged supergravity. In particular, one finds that the AdS2 × H2

solution of [28] also leads to the solution (3.6). Furthermore, the more general explicit topo-

logical black hole solution [28] uplifted on N7 describes the flow from the three-dimensional

CFT on R × H2 to the conformal quantum mechanics.
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3.2 Uplifting a Maldacena-Núñez solution

Let us now consider another class of wrapped brane solutions. In [20] Maldacena and Núñez

constructed supersymmetric solutions of D = 5 U(1)3 gauged supergravity which, upon

lifting on an S5 to type IIB supergravity, describe the (2, 2) SCFT arising on D3-branes

wrapping a holomorphic H2 in a Calabi-Yau three-fold. In the D = 5 solutions two of the

three gauge-fields are equal and one of the two scalar fields vanish, which means [11] that

these solutions can be recast as solutions of Romans’ D = 5 SU(2) × U(1) gauge theory,

with vanishing abelian gauge-field and with the non-abelian gauge-fields lying in an abelian

subgroup. In our conventions, the non-trivial fields are given by

ds2
5 =

e2f

m2
[ds2(R1,1) + dr2] +

e2g

m2
ds2(H2)

X = e−ϕ

F 3 = − 1√
2m

vol(H2) (3.7)

and f, g, ϕ are functions of r that satisfy the differential equations

e−f ḟ = −2

3
e−ϕ − 1

3
e2ϕ − 1

6
eϕ−2g

e−f ġ = −2

3
e−ϕ − 1

3
e2ϕ +

1

3
eϕ−2g

e−f ϕ̇ = −2

3
e−ϕ +

2

3
e2ϕ − 1

6
eϕ−2g (3.8)

These equations were partially integrated in equation (17) of [20]. In [20] it was shown

that there is a solution describing a flow across dimension from a locally AdS5 region

ds2
5 =

1

m2r2

[

ds2(R1,1) + ds2(H2) + dr2
]

(3.9)

down to an exact AdS3 × H2 solution given by

ds2
5 =

1

m224/3

[

ds2(AdS3) + ds2(H2)
]

X = 2−1/3

F 3 = − 1√
2m

vol(H2) (3.10)

We can now uplift this AdS3 × H2 solution to D = 11 using (3.1). The solution we

obtain is particularly simple because ∆̄ = 1 and it is precisely the solution first found

in [26] which describes an M5-brane wrapping an H2 × H2 embedded in a product of two

Calabi-Yau two-folds. Moreover, the flow across dimension solution uplifts to a subclass

of flow solutions studied in [26]. In particular if one sets e−ϕ = 2−1/3e−5λ2/3, e2f =

2−4/3e−2λ2/3e2f̄ , e−2g = 24/3e2λ2/3e−2g2 and substitutes into the differential equations given

in (3.8), one obtains the differential equations in (3.5) of [26] after restricting to the case

that e2λ1 = e−3λ2 and e2g1 = e−λ2 .
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3.3 Uplifting the Klemm-Sabra magnetic string solution

As we have already noted, any solution of minimal D = 5 gauged supergravity is also a

solution of Romans’ D = 5 theory. Consider the supersymmetric magnetic string solution

of [29], which we can write

ds2 = r1/2

(

r

3
− 1

r

)3/2

ds2(R1,1) +
1

9m2

(

r

3
− 1

r

)

−2

dr2 +
1

9m2
r2ds2(H2)

G =
1√
2
F 3 = − 1

3m
vol(H2)

X = 1 (3.11)

This interpolates from an asymptotic locally AdS5 region, with spatial slices R
1,1 × H2 in

Poincaré coordinates, to an AdS3 × H2 solution, which can be written

ds2 =
4

9m2

[

ds2(AdS3) +
3

4
ds2(H2)

]

G =
1√
2
F 3 = − 1

3m
vol(H2)

X = 1 (3.12)

These solutions can be uplifted on4 an S5 to type IIB supergravity using the formulae

in [11]. The uplifted solutions are dual to D3-branes wrapping a holomorphic H2 embedded

in a CY4 (see [31]). In particular the uplifted solution (3.11) describes the flow across

dimension from the AdS5 region down to the AdS3 fixed point, which is dual to a (0, 2)

SCFT.

The solution (3.11) can also be uplifted to D = 11 using (3.1). It then describes a flow

across dimension of the d = 4 SCFT living on M5-branes wrapped on H2 in CY2, placed

on R
1,1 × H2, down to a d = 2 (0, 2) SCFT. As far as we can tell this is a new solution of

D = 11 supergravity.

We also note, as somewhat of an aside, that the Klemm-Sabra solution can also be

uplifted to D = 11 in another way. First recall the N = 1 AdS5 ×w N6 solution of D = 11

supergravity which describes the N = 1 d = 4 CFT arising on M5-branes wrapping a

holomorphic H2 in a CY3 [20]. The consistent KK reduction on this N6 down to minimal

D = 5 gauged supergravity was carried out in [6]. The solution (3.11), thought of as a

solution of minimal gauged supergravity, can thus be uplifted on N6. The resulting D = 11

solution describes the flow across dimension of the d = 4 CFT placed on R
1,1 × H2 down

to the d = 2 (0,2) CFT which is dual to the uplifted AdS3 ×H2 solution (3.12). Moreover,

one finds that the uplifted flow solution and the uplifted AdS3 solution are identical to the

corresponding D = 11 solutions that describe M5-branes wrapping a holomorphic H2×H2

in a CY4 which were found in [27].

This story can be generalised further by noting that the solution of [20] is just one

example of several infinite classes of explicit AdS5 ×N6 solutions of D = 11 supergravity

4Using the results of [3] we can uplift on an arbitrary five-dimensional Sasaki-Einstein space; the resulting

AdS3 solutions have already been presented in [30].
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that were found in [7], all of which are dual to N = 1 d = 4 CFTs. The results of [6]

allow us to uplift the Klemm-Sabra solution [29] on any of these N6. The resulting D = 11

solutions are dual to the flow across dimension of the d = 4 CFTs on R
1,1 × H2 down to

d = 2 (0,2) CFTs which are dual to the uplifted AdS3 ×H2 solutions. In particular, if one

uplifts the AdS3 × H2 solution on these N6 one finds solutions that should be included in

the general constructions of [30], but we have not checked this in detail.

3.4 Uplifting Romans’ magnetovac solutions

The solutions of Romans’ theory that we discussed in the previous two subsections are

in fact special cases of a more general class of supersymmetric magnetovac solutions on

AdS3 × S2, T 2 and H2 that were first constructed (earlier) by Romans in [16]. The non-

abelian SU(2) gauge fields lie in an abelian subgroup and in addition the U(1) gauge field

is, in general, also active. Specifically, the solutions, which are parametrised by the positive

constant x, can be written

ds2
5 =

4x4/3

m2(2x + 1)2

[

ds2(AdS3) + R2
(2)ds2(Σl)

]

G = − 4(2x − 1)

m(2x + 1)2
R2

(2)vol(Σl)

F 3 = − 8x√
2m(2x + 1)2

R2
(2)vol(Σl)

X = x1/3 (3.13)

with l = 0,±1 and Σl is T 2, S2, H2, respectively. This is a supersymmetric solution

provided that

l =
4(1 − 4x)

(2x + 1)2
R2

(2) (3.14)

In particular, when 0 < x < 1/4 we take l = 1, when x = 1/4 we take l = 0 and when

x > 1/4 we take l = −1. When x = 1/4 we can set R2
(2) = 1 after scaling the T 2.

Note that when x = 1/2 the U(1) gauge field vanishes and the corresponding AdS3×H2

solution is precisely the AdS3 × H2 solution (3.10) that we discussed above. This solution

actually preserves twice as much supersymmetry as the generic solution. On the other

hand when x = 1 we get the AdS3 × H2 solution of minimal gauged supergravity that we

presented in (3.12).

The general magnetovacs can all be uplifted to D = 11 using (3.1) to obtain new

supersymmetric solutions of D = 11 supergravity. It would be interesting to study these

solutions further. It would be interesting to see if the solutions lie in the class of AdS3

solutions that arise from the “Kähler-4” class of Minkowski solutions that were discussed

in [32].

The general magnetovac solutions (3.13) can also be uplifted to type IIB on an S5 using

the results of [14]. We present the explicit results in the appendix where we also carry out

an independent check of the preservation of supersymmetry using the results of [33].
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4. Final comments

Through inspired guesswork we have constructed the non-linear KK ansatz, at the level

of bosonic fields, for the reduction of D = 11 supergravity to Romans’ D = 5 gauged

supergravity using the most general AdS5 ×w N6 solutions of D = 11 supergravity that

are dual to N = 2 SCFTs in d = 4. Invoking the argument of [34] we can conclude that

it should be possible to extend this result at the level of the fermions, though doing this

explicitly would be very difficult. A less ambitious goal would be to show that for the

bosonic configurations that we are considering, a supersymmetric solution of the Romans’

theory uplifts to a supersymmetric solution of D = 11 supergravity. This type of result

was shown for other cases in [3, 6, 1].

Another extension of this work would be to show that for the most general AdS5×wN5

solutions of type IIB supergravity that are dual to N = 2 d = 4 SCFTs, there is also a

consistent KK reduction to Romans’ theory. However, before this can be investigated,

using the techniques of this paper, the classification of such solutions, refining the results

of [5], needs to be carried out.

There is now substantial evidence that the conjecture of [1] concerning consistency of

KK truncations is correct, having been verified in several cases. It would be nice to have a

rigorous supergravity proof (perhaps building on the work of [35]) independent of a case by

case construction. Ideally, such an analysis would provide an algorithmic prescription for

constructing the non-linear KK ansatz, which, so far, has been found essentially by trial

and error. It would also be nice to have a general proof from the dual SCFT point of view

and some discussion in this direction has appeared in [36].
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A. Consistency of the KK ansatz

In this appendix we provide some details of the proof that the KK reduction

ansatz (2.17), (2.22) is indeed consistent, i.e., that it satisfies the equations of motion

of D = 11 supergravity, provided that the field equations of Romans’ D = 5 SU(2) × U(1)

gauged supergravity are imposed.

Our conventions for D = 11 supergravity follow those of [22]. In particular, the
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equations of motion are given by

dG4 = 0 , (A.1)

d ∗11 G4 = −1

2
G4 ∧ G4 , (A.2)

RAB = TAB , (A.3)

where we have defined

TAB =
1

12
G4AC1C2C3

G4B
C1C2C3 − 1

144
gABG4C1C2C3C4

GC1C2C3C4

4 . (A.4)

The frame of the deformed metric (2.17) is taken to be

ēµ = λ−1/2X−1/6∆1/6eµ

ē1 = X1/3∆1/6e1

ē2 = X1/3∆1/6e2

ē3 = X5/6∆−1/3ê3

ē4 = X1/3∆1/6e4

ēa = X−2/3∆−1/3 λρ

2m
(fa +

√
2mka

i Ai) (A.5)

where eµ, µ = 0, . . . , 4, is a frame for the five-dimensional metric ds2
5, (e1, . . . , e6) is the

orthonormal frame for the internal undeformed space N6 introduced in subsection 2.1, ê3 is

given in (2.20), fa, a = 5, 6, is a frame for the unit two sphere and ka
i are the components

of the three Killing vectors on this two-sphere with respect to the frame fa. These Killing

vectors satisfy the SU(2) Lie algebra

[ki, kj ] = ǫijkkk (A.6)

and also

kiakj
a = δij − µiµj , ka

i kb
i = δab . (A.7)

It is also useful to rewrite Dµi in (2.20) as

Dµi = ǫabki
b(fa +

√
2mkk

aAk) (A.8)

and to note that

DDµi =
√

2mǫijkF
kµj =

√
2mǫabki

bk
k
aF k . (A.9)

A.1 The four-form equations

The KK ansatz (2.22) for the four-form satisfies the Bianchi identity (A.1) provided the D =

5 gauge fields satisfy the Bianchi identities that can be obtained by differentiating (2.8),

and that the field equation (2.11) for the SU(2) field strength is imposed. In order to verify

this one needs to use the relations (2.5) and that the differentials of ê3 and Dµi give field

strength contributions, as in (A.9).
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To check that the KK ansatz (2.17), (2.22) satisfies the D = 11 four-form equation of

motion (A.2) is somewhat more involved. Imposing the D = 5 field equation (2.12) for

simplicity, the Hodge dual, with respect to the deformed metric (2.17), of (2.22) reads

∗11 G4 = ∗11G̃4 + X4 ∗ G ∧ λ1/2ρ ê1234

+
1

2
√

2m
X−2 ∗ F i ∧

[

ρ
√

1 − zǫijkµ
jDµk ∧ e124

− 1

4m
zµiǫhjkµ

hDµj ∧ Dµk ∧ [λ−2e12 + λ−1/2ρX∆−1ê34]

]

+
1

2
√

2m
F i ∧ ρ ê123 ∧

[

λ1/2 ǫijkµ
jDµk ∧ e4

− 1

4m
X−2∆−1

√

z(1 − z) µiǫhjkµ
hDµj ∧ Dµk

]

+

[

i

16
√

2m3
F ∧ z ǫijkµ

iDµj ∧ Dµk ∧ (e1 − ie2) ∧ (λ−2e4 + iX∆−1λ−1/2ρê3)

− 1

16
√

2m2
C ∧ X−2∆−1ρ

√

z(1 − z) ǫijkµ
iDµj ∧ Dµk ∧ (e1 − ie2) ∧ ê34 + c.c.

]

,

(A.10)

where ∗11G̃4 is the Hodge dual, with respect to the metric (2.17), of (2.23), namely,

∗11 G̃4 = 3X−1 ∗ dX ∧ ρ
√

1 − ze124

1

λ9/2ρ2
∗ 1l ∧

{

3λρ2

√
1 − z

X−1 ∗6

[

[(dλ)4e
12 − (dλ)2e

14 + (dλ)1e
24] ∧ e56

]

+X−2 λ1/2

√
1 − z

∗6

[

[∆d(zρ) + ρ(1 − z)(X − X−2)dz] ∧ e356
]

−2m(X − X−2)z
[

λρXe34 + λ−1/2∆e12
]

}

. (A.11)

Here, ∗6 is the Hodge dual with respect to the undeformed metric ds2(N6) in (2.1). In

fact, the presence in (A.11) of the volume form ∗1l, corresponding to the spacetime metric

ds2
5, allows one to write (A.11) in terms of the frame (e1, . . . , e6) of the undeformed metric

ds2(N6), once the contributions from the scalar field X have been taken into account.

Computing the exterior derivative of (A.11) we find

d ∗11 G̃4 =
[

3d(X−1 ∗ dX) + 4m2(X2 − X−1) ∗ 1l
]

∧ ρ
√

1 − z e124 , (A.12)

where we used the field equation for the undeformed four-form (2.4), which can be written

d

{

1

λ9/2ρ2
√

1 − z

[

λ1/2 ∗6 [d(zρ) ∧ e356]

+3λρ2 ∗6

[

[(dλ)4e
12 − (dλ)2e

14 + (dλ)1e
24] ∧ e56

]

]}

= 0 . (A.13)
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Next, differentiating (A.10) with the help of (A.12) and (2.5), and wedging (2.22) with

itself, one can compute

d ∗11 G4+
1

2
G4∧G4 =

[

3d(X−1 ∗ dX) − X4 ∗ G ∧ G +
1

2
X−2(∗F i ∧ F i + ∗C ∧ C̄)

+4m2(X2 − X−1) ∗1l
]

∧ ρ
√

1 − ze124

+

[

d(X4 ∗G) +
1

2
F i ∧ F i +

1

2
C̄ ∧ C

]

∧ λ1/2ρ ê1234

+
1

2
√

2m

[

D(X−2 ∗F i) + F i ∧ G

]

∧
[

ρ
√

1 − zǫijkµ
jDµk ∧ e124

− 1

4m
zµiǫhjkµ

hDµj ∧ Dµk ∧ [λ−2e12 + λ−1/2ρX∆−1ê34]

]

.

(A.14)

This indeed shows that the KK ansatz (2.17), (2.22) satisfies the D = 11 four-form equation

of motion (A.2), provided that the five-dimensional fields satisfy the field equations (2.9)–

(2.12) of Romans’ D = 5 SU(2) × U(1) gauged supergravity.

A.2 The Einstein equations

In order to check the D = 11 Einstein equations (A.3), we first give explicit expressions

for the tensor TAB , that defines the right hand side, in terms of the frame (A.5). Substi-

tuting the expression (2.22) of the KK ansatz for G4 into (A.4) we find, for the external

components,

λ−1X−1/3∆1/3Tµν=
zX5

2∆

(

GµρGν
ρ− 1

6
ηµνGρσGρσ

)

− 1

24
((1−z)X−4∆−1+2X−2)ηµνF i

ρσF iρσ

+
1

4
(X−2 + (1 − z)X−4∆−1)F i

µρF
i
ν
ρ +

1

4
X−1z∆−1F i

µρF
j
ν

ρµiµj

1

2
X−2

[

C(µ
ρC̄ν)ρ −

1

6
ηµνCρσC̄ρσ

]

− 1

24
(1 − z)X−4∆−1ηµνCρσC̄ρσ

+
3

2
(1−z)z∆−2X−3[3∇µX∇νX−ηµν(∇X)2]− 3

2

∆ + zX

∆2X3(1−z)λ3
(∇λ)2

−2mρ(X(2 + z) + X−2(1 − z))√
1 − z∆2X3

(dλ)4

− 2m2

3∆2X5
[2z2X9 + z(7 − 5z)X6 + (9 − 8z + 4z2)X3 + z(1 − z)](A.15)

where we note, for example, that Gµν are the components of G with respect to the D = 5

frame eµ. For the mixed components we find

Tµ1 =
9

2
X−13/6∆−7/3λ−1/2z (dλ)1 ∇µX ,

Tµ2 =
9

2
X−13/6∆−7/3λ−1/2z (dλ)2 ∇µX ,

Tµ3 = X4/3∆−5/6λ
√

1 − z

[

− 3

2
z∆−1 Gµν∇νX +

1

16
X−4ǫµλνρσ(F iλνF iρσ + CλνC̄ρσ)

]

,
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Tµ4 = X−7/6∆−7/3λ−1/2z

[

9

2
X−1(dλ)4 + 3mρ−1

√
1 − z [X2z + X−1(3 − z)]

]

∇µX,

Tµa =
1

2
√

2
X−1/6∆−5/6λ5/2ρ ki

a

[

3(1 − z)X−3∆−1 F i
µν∇νX +

1

4
X2ǫµλνρσF λνGρσ

]

(A.16)

Finally, to write the internal components of TAB it proves convenient to introduce, for

n = 1, 2, 4,

Un =
λ1/2

√
1 − z

X1/6∆−7/6
[

3ρX−1(dλ)n + 2m
√

1 − zX[Xz + (3 − z)X−2]δn4

]

,

Vn =
1

λ
√

1 − z
X2/3∆−2/3

[

3X−2(dλ)n − 2mλ3ρ
√

1 − z(X − X−2) δn4

]

, (A.17)

so that (2.23) can be written in the frame (A.5) as

G̃4 = (V4ē
12 + U1ē

13 − V2ē
14 + U2ē

23 + V1ē
24 − U4ē

34) ∧ ē56 . (A.18)

Then one finds, for the non-vanishing internal components (m,n, p ∈ {1, 2, 4}, a, b ∈ {5, 6}):

Tmn =
1

12
X4/3∆−4/3λz

[

− X4GµνGµν +
1

2
X−2

(

F i
µνF iµν + CµνC̄µν

) ]

δmn

−3

2
λz(1 − z)∆−7/3X−8/3∇µX∇µX δmn

+
1

2
(UmUn − VmVn) +

1

6
(−UpU

p + 2VpV
p) δmn,

T13 =
1

2
(U4V2 − U2V4),

T23 =
1

2
(U1V4 − U4V1),

T33 = − 1

12
λzX16/3∆−4/3GµνGµν

+
1

24
λX−5/3∆−4/3[Xz + 3X−2(1 − z)]

(

F i
µνF iµν + CµνC̄µν

)

+3λz(1 − z)∆−7/3X−8/3∇µX∇µX

+
1

6
(−UpU

p + 2VpV
p) ,

T3a =
1

4
√

2
X5/6∆−4/3λ5/2ρ

√
1 − z ki

aF
i
µνGµν ,

Tab = −1

6
λzX4/3∆−4/3

[

− X4GµνGµν +
1

2
X−2

(

F i
µνF iµν + CµνC̄µν

)

]

δab

+
1

8
X−2/3∆−4/3λzki

ak
j
bF

i
µνF jµν

+3λz(1 − z)∆−7/3X−8/3∇µX∇µXδab

+
1

3
(−UpU

p + 2VpV
p)δab . (A.19)
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The spin connection corresponding to the deformed metric (2.17) can be computed in

the frame (A.5) and we find, for the external components,

ω̄µν = ωµν + λ1/2X−17/6∆−7/6(1 − z)∇[µX ēν] − 1

2
X7/6∆−2/3λ1/2

√
1 − zGµν ē3

− 1

2
√

2
X−1/3∆−2/3λ2ρ ki

aF
iµν ēa , (A.20)

for the mixed components,

ω̄µ1 = −1

2
X−7/3∆−7/6λ−1(dλ)1 ēµ − 1

2
λ1/2zX1/6∆−7/6∇µX ē1

ω̄µ2 = −1

2
X−7/3∆−7/6λ−1(dλ)2 ēµ − 1

2
λ1/2zX1/6∆−7/6∇µX ē2

ω̄µ3 = −1

2
X7/6∆−2/3λ1/2

√
1 − z Gµ

ν ēν

−1

2
λ1/2X−5/6∆−7/6[Xz + 3X−2(1 − z)]∇µX ē3

ω̄µ4 = X−1/3∆−7/6λ−1

[

− 1

2
X−2(dλ)4 +

2mz

3ρ

√
1 − z(X − X−2)

]

ēµ

−1

2
λ1/2zX1/6∆−7/6∇µX ē4

ω̄µa = − 1

2
√

2
X−1/3∆−2/3λ2ρkaiF iµ

ν ēν + λ1/2zX1/6∆−7/6∇µX ēa (A.21)

and for the non-vanishing internal components,

ω̄12 = −mB + M2ē
1 − M1ē

2 − N4ē
3

ω̄13 = P4ē
2 − Q1ē

3 − P2ē
4

ω̄14 = M4ē
1 + N2ē

3 − M1ē
4

ω̄1a = −R1ē
a

ω̄23 = −P4ē
1 − Q2ē

3 + P1ē
4

ω̄24 = M4ē
2 − N1ē

3 − M2ē
4

ω̄2a = −R2ē
a

ω̄34 = −P2ē
1 + P1ē

2 + Q4ē
3

ω̄4a = −R4ē
a

ω̄56 = µiAi − µ3

√

(µ1)2 + (µ2)2
f6 (A.22)

where fa, a = 5, 6, was introduced in (A.5) and we have defined, for n = 1, 2, 4:

Mn =
1

6λ(1 − z)
X−1/3∆−7/6

[

[

9Xz + 6X−2(1 − z)
]

(dλ)n

+2mλ3ρ
√

1 − z
[

X(2 + z) + X−2(1 − z)
]

δn4

]

,

Nn = − λ1/2

2(1 − z)
X−5/6∆−2/3

[

3ρX(dλ)n + 2m
√

1 − z
[

X(1 + z) + X−2(1 − z)
]

δn4

]

,
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Pn =
λ1/2

2(1 − z)
X1/6∆−2/3

[

3ρ(dλ)n + 2m
√

1 − z δn4

]

,

Qn = − 1

6λ(1 − z)
X−1/3∆−7/6

[

[

9Xz + 3X−2(1 − z)
]

(dλ)n

+4mλ3ρ
√

1 − z
[

X(2 + z) + X−2(1 − z)
]

δn4

]

,

Rn = X−1/3∆−7/6

[

λ−1X−2(dλ)n +
2m

3λρ

√
1 − z

[

Xz + X−2(3 − z)
]

δn4

]

. (A.23)

Notice that, when X = 1, B = Ai = 0, the spin connection reduces to that of the

undeformed metric (2.1). In particular, the internal components (A.22) reduce to the spin

connection of the undeformed ds2(N6), that can be calculated from the equations (2.5).

The Ricci tensor corresponding to the deformed metric (2.17) can now be calculated

in the frame (A.5) and, for illustration, we just record here the expression for its external

components R̄µν . To do this it is convenient to notice that, for any of the solutions

AdS5 ×w N6 described in subsection 2.1, one has

∇2λ + 4m2λ2 +
13z − 1

2λ(1 − z)
(∇λ)2 +

12mz

λρ
√

1 − z
(dλ)4 = 0, (A.24)

as can be shown using (2.5). Defining the tensor

Eµν = Rµν − 3X−2 ∇µX ∇νX +
4

3
m2 (X2 + 2X−1) ηµν

−1

2
X4

[

Gµ
ρGνρ −

1

6
ηµν GρσGρσ

]

− 1

2
X−2

[

F i ρ
µ F i

νρ −
1

6
ηµν F i

ρσF iρσ

]

−1

2
X−2

[

C(µ
ρ C̄ν)ρ −

1

6
ηµν CρσC̄ρσ

]

, (A.25)

and the scalar

S = 3∇µ(X−1∇µX) + 4m2(X2 − X−1) − 1

2
X4GµνGµν +

1

4
X−2F i

µνF iµν +
1

4
X−2CµνC̄µν ,

(A.26)

a long calculation reveals that

R̄µν = λX1/3∆−1/3

[

Eµν + ηµν
(1 − z)

6X2∆
S

]

+ Tµν , (A.27)

where Tµν is given in (A.15). This shows that the external components of the D = 11

Einstein equations (A.3) are satisfied provided S = 0 and Eµν = 0, which are precisely the

scalar (2.9) and Einstein equations (2.13) of Romans’ D = 5 gauged supergravity.

B. The magnetovac solutions uplifted to type IIB

After uplifting the magnetovac solutions (3.13) to type IIB using [14] we find that the

ten-dimensional metric is given by

m2ds2
10 =

4x

(2x + 1)2
∆̄1/2

[

ds2(AdS3) + R2
(2)ds2(Σl)

]

+ ∆̄1/2dξ2 +
cos2 ξ

4∆̄1/2
dΩ2

+
cos2 ξ

4∆̄1/2

[

σ3 −
8xR2

(2)

(2x + 1)2
W

]2

+
x sin2 ξ

∆̄1/2

[

dτ −
4(2x − 1)R2

(2)

(2x + 1)2
W

]2

(B.1)
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where ∆̄ = sin2 ξ + x cos2 ξ and the potential W is defined so that dW = vol(Σl).

We can directly check the supersymmetry of this uplifted IIB solution by recasting it

in the general form found in [33]. In particular the solutions are dual to SCFTs with (at

least) (0, 2) supersymmetry. To do this we first employ a coordinate transformation so that

σ3 = σ′

3 +
2x

2x + 1
dz

dτ =
1

2x + 1
dz (B.2)

We then find that the metric takes the form

m2ds2
10 = e2A

[

ds2(AdS3) + e−4Ads2
6 +

1

4
(dz + P )2

]

(B.3)

where

e2A =
4x

(2x + 1)2
∆̄1/2

e−4Ads2
6 = R2

(2)ds2(Σl) +
(2x + 1)2

4x
dξ2

+
(2x + 1)2 cos2 ξ

16x∆̄
dΩ2 +

(2x + 1)2 cos2 ξ sin2 ξ

16x∆̄2

[

σ′

3 +
16x(x − 1)R2

(2)

(2x + 1)2
W

]2

P = −
4R2

(2)

(2x + 1)∆̄
[(2x − 1) sin2 ξ + x cos2 ξ]W +

(2x + 1) cos2 ξ

2∆̄
σ′

3 (B.4)

After some calculation one can show that ds2
6 is Kähler, with Kähler form J6 given by

e−4AJ6 = R2
(2)vol(Σl) +

(2x + 1)2 cos2 ξ

16x∆̄
vol(S2)

−(2x + 1)2 cos ξ sin ξ

8x∆̄
dξ ∧

[

σ′

3 +
16x(x − 1)R2

(2)

(2x + 1)2
W

]

(B.5)

and that P is a Ricci form potential for this Kähler metric. Further calculation shows that

the warp factor satisfies

R = 8e−4A (B.6)

and that ds2
6 satisfies

∇2R + RijR
ij − 1

2
R2 = 0 (B.7)

This verifies that the IIB solutions preserve (0, 2) supersymmetry [33].

We have already noted that for x = 1 the solution corresponds to D3-branes wrapped

on a H2 in a CY4 and is dual to a (0, 2) SCFT. The x = 1/2 solution corresponds to D3-

branes wrapped on a H2 in a CY3, and is dual to a (2, 2) SCFT. The solutions for generic

x are dual to SCFTs with (0, 2) SCFT. It is natural to wonder if they lie within the class

of explicit solutions found in [30]. If we perform the coordinate transformation

σ3 = σ′

3 − dτ ′

dτ = dτ ′ (B.8)
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the metric (B.1) can be written

m2ds2
10 =

4x

(2x + 1)2
∆̄1/2

[

ds2(AdS3) + R2
(2)ds2(Σl)

]

+ ∆̄1/2dξ2 +
cos2 ξ

4∆̄1/2
dΩ2

+
Z

4∆̄1/2

[

dτ ′ − cos2 ξ

Z
σ′

3 −
8xR2

(2)

Z(2x + 1)2
(− cos2 ξ + 2(2x − 1) sin2 ξ)W

]2

+
x cos2 ξ sin2 ξ

∆̄1/2Z

[

σ′

3 + lW
]2

(B.9)

where Z = 4x sin2 ξ +cos2 ξ. One can now compare with the solutions in [30] (see eq (2.11)

of this reference).
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[18] M. Cvetič, H. Lü, C.N. Pope and J.F. Vazquez-Poritz, AdS in warped spacetimes, Phys. Rev.

D 62 (2000) 122003 [hep-th/0005246].

[19] M. Alishahiha and Y. Oz, AdS/CFT and BPS strings in four dimensions, Phys. Lett. B 465

(1999) 136 [hep-th/9907206].
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